Multiscale modeling of semimetal contact to two-dimensional transition metal dichalcogenide semiconductor

نویسندگان

چکیده

A multiscale simulation approach is developed to simulate the contact transport properties between semimetal and a monolayer two-dimensional transition metal dichalcogenide (TMDC) semiconductor. The results elucidate mechanisms for low resistance TMDC semiconductor contacts from quantum perspective. compare favorably with recent experiments. Furthermore, show that of bismuth-MoS 2 can be further reduced by engineering dielectric environment doping material [Formula: see text]. indicates possibility achieve an ultrashort transfer length ?1 nm, which allow aggressive scaling size.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two-dimensional transition metal dichalcogenide (TMD) nanosheets.

This special issue is about two-dimensional transitionmetal dichalcogenides (2DTMDs), a family of materials consisting of over 40 compounds with the generalized formula of MX2, where M is a transition metal typically from groups 4–7, and X is a chalcogen such as S, Se or Te. Bulk TMDs have been widely studied over several decades because it is possible to formulate compounds with disparate elec...

متن کامل

A gate defined quantum dot on the two-dimensional transition metal dichalcogenide semiconductor WSe2.

Two-dimensional layered materials, such as transition metal dichalcogenides (TMDCs), are promising materials for future electronics owing to their unique electronic properties. With the presence of a band gap, atomically thin gate defined quantum dots (QDs) can be achieved on TMDCs. Herein, standard semiconductor fabrication techniques are used to demonstrate quantum confined structures on WSe2...

متن کامل

The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets.

Ultrathin two-dimensional nanosheets of layered transition metal dichalcogenides (TMDs) are fundamentally and technologically intriguing. In contrast to the graphene sheet, they are chemically versatile. Mono- or few-layered TMDs - obtained either through exfoliation of bulk materials or bottom-up syntheses - are direct-gap semiconductors whose bandgap energy, as well as carrier type (n- or p-t...

متن کامل

Two-Dimensional Transition Metal Dichalcogenide Alloys: Stability and Electronic Properties.

Using density-functional theory calculations, we study the stability and electronic properties of single layers of mixed transition metal dichalcogenides (TMDs), such as MoS2xSe2(1-x), which can be referred to as two-dimensional (2D) random alloys. We demonstrate that mixed MoS2/MoSe2/MoTe2 compounds are thermodynamically stable at room temperature, so that such materials can be manufactured us...

متن کامل

Understanding catalysis in a multiphasic two-dimensional transition metal dichalcogenide

Establishing processing-structure-property relationships for monolayer materials is crucial for a range of applications spanning optics, catalysis, electronics and energy. Presently, for molybdenum disulfide, a promising catalyst for artificial photosynthesis, considerable debate surrounds the structure/property relationships of its various allotropes. Here we unambiguously solve the structure ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied Physics Letters

سال: 2022

ISSN: ['1520-8842', '0003-6951', '1077-3118']

DOI: https://doi.org/10.1063/5.0097213